本篇文章给大家谈谈《发动机气缸结构图》对应的知识点,希望对各位有所帮助。
本文目录一览:
- 1、气缸体的结构是什么?
- 2、汽车发动机机体组的作用、组成、分类?
- 3、气缸体的结构?
- 4、发动机缸体的组成?
- 5、汽车发动机的气缸体构造是怎么样的?
- 6、汽车气缸的组成
气缸体的结构是什么?
气缸体是发动机的主体,它将各个气缸和曲轴箱连成一体,是安装活塞、曲轴以及其他零件和附件的支承骨架。气缸体的结构形式通常分为一般式气缸体、龙门式气缸体、隧道式气缸体。
一般式气缸体:这种气缸体的特点是油底壳安装平面和曲轴旋转中心在同一高度。其优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差,曲轴前后端的密封性较差,多用于中小型发动机。
龙门式气缸体:这种气缸体的特点是油底壳安装平面低于曲轴的旋转中心。其优点是强度和刚度较好,能承受较大的机械负荷,密封简单可靠,维修方便;但其缺咸是工艺性较差,加工较困难。
隧道式气缸体:这种形式的气缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从气缸体后部装入。其优点是结构紧凑、刚度和强度好;但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。
汽车发动机机体组的作用、组成、分类?
1、机体组的组成: 气缸盖、气缸体、油底壳、曲轴箱。 作用:①容纳活塞②给活塞压缩空气(混合器)提供空间 ③为活塞传递热量④给活塞提供导向作用。 气缸结构:气缸体上面按一定规律排列,为活塞运动导向的圆柱,形成的空腔为气缸。气缸外壁周围空腔是相互连通,构成水道。冷却液在期间流动以增强散热。气缸体下部支撑曲轴转动的空腔称为曲轴箱,它的前后端及中间隔板处布有纵横游道,满足润滑。 结构形式 1、一般式气缸体 是指气缸体下平面与曲轴轴线在同一平面。 特点:结构简单,制造方便,强度较差,与曲轴的前后端的密封较差。 应用车型: 中、小型汽车。 2、龙门式气缸体 是指气缸体的下平面降到衢州轴线以下的钢体。 特点:刚度好,与油底壳的密封简单可靠,维修方便,工艺性较差。 应用车型。 广泛应用于各类柴油机。 3、隧道式气缸体 是指采用组合式取轴滚动轴承的缸体。 特点:刚度好,与油底壳密封简单可靠,维修方便,但工艺性差。 应用车型:用于大功率的柴油发动机。 气缸体的排列形式 1、直列式: 指发动机中个气缸排成一条直线。 特点: 结构简单,加工容易,工作平顺。长度宽度尺寸较大。 2、V型式: 发动机中两列气缸成V型排列,且共用一根曲轴对外输出功率。 特点: 结构紧凑,纵向长度短,宽度大,机体形状复杂,加工制作困难。 3、对置式: 发动机中两列气缸呈水平相对排列,称为水平对置式发动机。 特点: 重心低有利于整车布局结构复杂,宽度增加。
气缸体的结构?
一、气缸-气缸种类
气压传动中将压缩气体的压力能转换为机械能的气动执行元件。气缸有作往复直线运动的和作往复摆动的两类(见图)。作往复直线运动的气缸又可分为单作用、双作用、膜片式和冲击气缸 4种。
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。
④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以作功。冲击气缸增加了带有喷口和泄流口的中盖。中盖和活塞把气缸分成储气腔、头腔和尾腔三室。它广泛用于下料、冲孔、破碎和成型等多种作业。作往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于 280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。
二、气缸的作用:
将压缩空气的压力能转换为机械能,驱动机构作直线往复运动、摆动和旋转运动。
三、气缸的分类:
直线运动往复运动的气缸、摆动运动的摆动气缸、气爪等。
四、气缸的结构:
气缸是由缸筒、端盖、活塞、活塞杆和密封件组成,其内部结构如图所示:
五、SMC气缸原理图
1)缸筒
缸筒的内径大小代表了气缸输出力的大小。活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。小型气缸有使用不锈钢管的。带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。
SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。
2)端盖
端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,现在为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。
3)活塞
活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。
4)活塞杆
活塞杆是气缸中最重要的受力零件。通常使用高碳钢,表面经镀硬铬处理,或使用不锈钢,以防腐蚀,并提高密封圈的耐磨性。
5)密封圈
回转或往复运动处的部件密封称为动密封,静止件部分的密封称为静密封。
缸筒与端盖的连接方法主要有以下几种:
整体型、铆接型、螺纹联接型、法兰型、拉杆型。
6)气缸工作时要靠压缩空气中的油雾对活塞进行润滑。也有小部分免润滑气缸。
六、气缸-工作原理
根据工作所需力的大小来确定活塞杆上的推力和拉力。由此来选择气缸时应使气缸的输出力稍有余量。若缸径选小了,输出力不够,气缸不能正常工作;但缸径过大,不仅使设备笨重、成本高,同时耗气量增大,造成能源浪费。在夹具设计时,应尽量采用增力机构,以减少气缸的尺寸。
气缸
下面是气缸理论出力的计算公式:
F:气缸理论输出力(kgf)
F′:效率为85%时的输出力(kgf)--(F′=F×85%)
D:气缸缸径(mm)
P:工作压力(kgf/cm2)
例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少?芽输出力是多少?
将P、D连接,找出F、F′上的点,得:
F=2800kgf;F′=2300kgf
在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1中查出。
例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为132kgf,(气缸效率为85%)问:该选择多大的气缸缸径?
●由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F′/85%=155(kgf)
●由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为63的气缸便可满足使用要求。
七、原因分析
在汽缸运行过程中,汽缸渗漏和汽缸变形是最为常见的设备问题,汽缸结合面的严密性直接影响机组的安全经济运行,检修 研刮汽缸的结合面,使其达到严密,是汽缸检修的重要工作,在处理结合面漏汽的过程中,要仔细分析形成的原因,根据变形的程度和间隙的大小,可以综合的运用 各种方法,以达到结合面严密的要求。原因如下:
1.汽缸是铸造而成的,汽缸出厂后都要经过时效处理,就是要存放一些时间,使汽缸在住铸造过程中所产生的内应力完全 消除。如果时效时间短,那么加工好的汽缸在以后的运行中还会变形,这就是为什么有的汽缸在第一次泄漏处理后还会在以后的运行中还有漏汽发生。因为汽缸还在 不断的变形。
2.汽缸在运行时受力的情况很复杂,除了受汽缸内外气体的压力差和装在其中的各零部件的重量等静载荷外,还要承受蒸汽流出静叶时对静止部分的反作用力,以及各种连接管道冷热状态下对汽缸的作用力,在这些力的相互作用下,汽缸发生塑性变形造成泄漏。
3.汽缸的负荷增减过快,特别是快速的启动、停机和工况变化时温度变化大、暖缸的方式不正确、停机检修时打开保温层过早等,在汽缸中和发兰上产生很大的热应力和热变形。
4.汽缸在机械加工的过程中或经过补焊后产生了应力,但没有对汽缸进行回火处理加以消除,致使汽缸存在较大的残余应力,在运行中产生永久的变形。
5.在安装或检修的过程中,由于检修工艺和检修技术的原因,使内缸、汽缸隔板、隔板套及汽封套的膨胀间隙不合适,或是挂耳压板的膨胀间隙不合适,运行后产生巨大的膨胀力使汽缸变形。
6.使用的汽缸密封剂质量不好、杂质过多或是型号不对;汽缸密封剂内若有坚硬的杂质颗粒就会使密封面难以紧密的结合。VIF900高温汽缸密封剂是最新汽轮机汽缸密封材料,高、中、低压缸可通用,避免了型号选择不当而造成的汽缸泄漏。
7.汽缸螺栓的紧力不足或是螺栓的 材质不合格。汽缸结合面的严密性主要靠螺栓的紧力来实现的。机组的起停或是增减负荷时产生的热应力和高温会造成螺栓的应力松弛,如果应力不足,螺栓的预紧 力就会逐渐减小。如果汽缸的螺栓材质不好,螺栓在长时间的运行当中,在热应力和汽缸膨胀力的作用下被拉长,发生塑性变形或断裂,紧力就会不足,使汽缸发生 泄漏的现象。
8.汽缸螺栓紧固的顺序不正确。一般的汽缸螺栓在紧固时是从中间向两边同时紧固,也就是从垂弧最大处或是受力变形最 大的地方紧固,这样就会把变形最大的处的间隙向汽缸前后的自由端转移,最后间隙渐渐消失。如果是从两边向中间紧,间隙就会集中于中部,汽缸结合面形成弓型 间隙,引起蒸汽泄漏。
八、处理方法
汽缸结合面产生变形和泄漏的原因不同,而且出现的部位和变形泄漏的程度不也不同,首先要用长平尺和塞尺检查汽缸结合面的变形情况,在检修中要根据泄漏的原因和变形程度采取相应的检修措施。具体方法如下:
1.汽缸变形较大或漏汽严重的结合面,采用研刮结合面的方法
如果上缸结合面变形在0.05mm范围内,以上缸结合面为基准面,在下缸结合面涂红丹或是压印蓝纸,根据痕迹研刮下 缸。如果上缸的结合面变形量大,在上缸涂红丹,用大平尺研出痕迹,把上缸研平。或是采取机械加工的方法把上缸结合面找平,再以上缸为基准研刮下缸结合面。 汽缸结合面的研刮一般有两种方法:
(1)是不紧结合面的螺栓,用千斤顶微微推动上缸前后移动,根据下缸结合面红丹的着色情况来研刮。这种方法适合结构刚性强的高压缸。
(2)是紧结合面的螺栓,根据塞尺的检查结合面的严密性,测出数值及压出的痕迹,修刮结合面,这种方法可以排除汽缸垂弧对间隙的影响。
2.采用适当的汽缸密封材料
汽轮机汽缸密封剂产品质量参差不齐;在选择汽轮机汽缸密封剂时,就要选在行业内有口碑,产品质量有保证的正规生产厂家,以保证检修处理后汽缸的严密性。
3.局部补焊的方法
由于汽缸结合面被蒸汽冲刷或腐蚀出沟痕,选用适当的焊条把沟痕添平,用平板或平尺研出痕迹,研刮焊道和结合面在同一 平面内。汽缸结合面变形较大或是漏汽严重时,在下缸的结合面补焊一条或两条10—20mm宽的密消除间隙封带,然后用平尺或是扣上缸测量,并涂红丹研刮, 直到消除间隙。此操作的工艺也很简单,焊前预热汽缸至150℃,然后在室温下进行分段退焊或跳焊。选用奥氏体焊条,如A407、A412,焊后用石棉布覆 盖保温缓冷。待冷却室温后进行打磨修刮。
4.汽缸结合面的涂镀或喷涂
当汽缸结合面大面积漏汽,间隙在0.50mm左右时,为了减少研刮的工作量,可用涂镀的工艺。用汽缸做阳极,涂具做 阴极,在汽缸的结合面上反复涂刷电解溶液,涂层的厚度要根据汽缸结合面间隙的大小而定,涂层的种类要根据汽缸的材料和修刮的工艺而定。喷涂就是用专用的高 温火焰喷枪把金属粉末加热至熔化或达到塑性状态后喷射于处理过的汽缸表面,形成一层具有所需性能的涂层方法。其特点就是设备简单,操作方便涂层牢固,喷涂 后汽缸温度仅为70℃—80℃不会使汽缸产生变形,而且可获得耐热,耐磨,抗腐蚀的涂层。注意的是在涂渡和喷涂前都要对缸面进行打磨、除油、拉毛,在涂渡 和喷涂后要对涂层进行研刮,保证结合面的严密。
5.结合面加垫的方法
如果结合面的局部间隙泄漏不是很大,可用80—100目的铜网经热处理使其硬度降低,然后剪成适当的形状,铺在结合 面的漏汽处,再配以汽缸密封剂。如果结合面的间隙较大,泄漏严重,可在上下结合面开宽50mm深5mm的槽,中间镶嵌IGr18Ni9Ti的齿形垫,齿形 垫的厚度一般比槽的深度大0.05—0.08mm左右,并可用同等形状的不锈钢垫片做以调整。
6.控制螺栓应力的方法
如果汽缸结合面的变形较小,而且很均匀,可在有间隙处更换新的螺栓,或是适当的加大螺栓的预紧力。按从中间向两边同 时紧固,也就是从垂弧最大处或是受力变形最大的地方紧固螺栓。理论上来说,控制螺栓的预紧力可用公式d/L≤A来计算,但由于此计算的数据与测量的手段还 在研究当中,多在螺栓的允许的最大应力内根据经验而定。
九、汽缸的应用领域
印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。
发动机缸体的组成?
您好,发动机缸体由缸套、活塞、活塞环、连杆、连杆轴承瓦,主轴、主轴轴承瓦、主轴瓦盖、止推瓦、前端盖、后端盖、前后油封、机油泵、爆震传感器、机油感应塞、发动机支架等组成哦~谢谢,希望能帮到您~
汽车发动机的气缸体构造是怎么样的?
你好,气缸体是发动机的主体,它将各个气缸和曲轴箱连成一体,是安装活塞、曲轴以及其他零件和附件的支承骨架。
为了保证气缸表面能在高温下正常工作,必须对气缸和气缸盖随时加以冷却。冷却方式有两种:一种用冷却液来冷却(水冷);另一种用空气来冷却(风冷)。
汽车发动机上采用较多的是水冷却。发动机用水冷却时,气缸周围和气缸盖中均有充入冷却液的空腔,称为水套,气缸体和气缸盖上的水套是相互连通的。
发动机用空气冷却时,在气缸体和气缸盖外表面铸有许多散热片,以增加散热面积,保证散热充分。一般风冷发动机的缸体与曲轴箱是分开铸造的。
对于多缸发动机,气缸的排列形式决定了发动机外形结构,对于发动机气缸体的刚度和强度也有影响,并关系到汽车的整体布局情况。汽车发动机气缸排列基本上有以下三种形式:
直列式发动机
发动机的各个气缸排成一列,一般是垂直布置的。但为了降低发动机的高度,有时也把气缸布置成倾斜的甚至是水平的。单列式气缸体结构简单,加工容易,但发动机长度和高度较大。一般六缸以下发动机多采用单列式。例如捷达轿车、富康轿车、红旗轿车所使用的发动机均采用这种直列式气缸体。
V型发动机
气缸排成两列,左右两列气缸中心线的夹角γ180°,称为V型发动机,V型发动机与直列发动机相比,缩短了机体长度和高度,增加了气缸体的刚度,减轻了发动机的重量,但加大了发动机的宽度,且形状较复杂,加工困难,一般用于8缸以上的发动机,6缸发动机也有采用这种形式的气缸体。
对置式发动机
气缸排成两列,左右两列气缸中心线的夹角γ=180°。
希望可以帮到你,望采纳,谢谢!!!
汽车气缸的组成
气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,缸筒与端盖的连接方法主要有以下几种:整体型、铆接型、螺纹联接型、法兰型、拉杆型。
缸筒:缸筒的内径大小代表了气缸输出力的大小。活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8μm。SMC、 CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。
端盖:端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。
活塞:活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。
活塞杆:活塞杆是气缸中最重要的受力零件。通常使用高碳钢、表面经镀硬铬处理、或使用不锈钢、以防腐蚀,并提高密封圈的耐磨性。
希望对你有帮助望采纳,谢谢!
关于《发动机气缸结构图》的介绍到此就结束了。